January 30, 2023

Springswines

The Tour And Travel Enthusiasts

Anomalous thermal transport under high pressure in boron arsenide

7 min read
Anomalous thermal transport under high pressure in boron arsenide
  • Zhang, L., Wang, Y., Lv, J. & Ma, Y. Materials discovery at high pressures. Nat. Rev. Mater. 2, 17005 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N. & Goncharov, A. F. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99–101 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • Knudson, M. D. et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348, 1455–1460 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pozzo, M., Davies, C., Gubbins, D. & Alfe, D. Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485, 355–358 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubrovinsky, L. et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 525, 226–229 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Loubeyre, P., Occelli, F. & Dumas, P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577, 631–635 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fratanduono, D. E. et al. Establishing gold and platinum standards to 1 terapascal using shockless compression. Science 372, 1063–1068 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bridgman, P. W. The Physics of High Pressure (MacMillan, 1931).

  • Lawson, A. On the high temperature heat conductivity of insulators. J. Phys. Chem. Solids 3, 155–156 (1957).

    ADS 

    Google Scholar
     

  • Rodionov, K. P. Problem of the effect of hydrostatic pressure on the thermal conductivity of insulators. Phys. Met. Metallogr. 6, 160–164 (1958).


    Google Scholar
     

  • Klemens, K. P. Pressure dependence of the thermal conductivity of non-metals. In Proc. Ninth Conf. Thermal Conductivity 533–534 (United States Atomic Energy Commission, 1969).

  • Slack, G. A. In Proc. Int Conf. Phonon Scattering in Solids 24 (Centre d’Etudes Nucleaires de Saclay, 1972).

  • Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 1960).

  • Leibfried, G. & Schlömann, E. Thermal conductivity of dielectric solids by a variational technique. Nachr. Akad. Wiss. Gött. Math.-Phys. Kl. 2A 23, 1366–1370 (1954).

  • Anderson, O. L. The Debye temperature of vitreous silica. J. Phys. Chem. Solids 12, 41–52 (1959).

    ADS 
    CAS 

    Google Scholar
     

  • Steigmeier, E. F. & Kudman, I. Thermal conductivity of III–V compounds at high temperatures. Phys. Rev. 132, 508–512 (1963).


    Google Scholar
     

  • Billard, D. & Cabannes, F. La conductivité thermique de réseau aux hautes températures. High Temp. High Press. 3, 201 (1971).

    CAS 

    Google Scholar
     

  • Wolf, G. H. & Jeanloz, R. Vibrational properties of model monatomic crystals under pressure. Phys. Rev. B 32, 7798–7810 (1985).


    Google Scholar
     

  • Slack, G. A. The thermal conductivity of nonmetallic crystals. Solid State Phys. 34, 1–71 (1979).

    CAS 

    Google Scholar
     

  • Gerlich, D. & Andersson, P. Temperature and pressure effects on the thermal conductivity and heat capacity of CsCl, CsBr and CsI. J. Phys. C: Solid State Phys. 15, 5211–5222 (1982).


    Google Scholar
     

  • Hakansson, B. & Andersson, P. Thermal conductivity and heat capacity of solid NaCl and NaI under pressure. J. Phys. Chem. Solids 47, 355–362 (1986).

    ADS 

    Google Scholar
     

  • Xiong, X., Ragasa, E. J., Chernatynskiy, A., Tang, D. & Phillpot, S. R. Lattice thermal conductivity of quartz at high pressure and temperature from the Boltzmann transport equation. J. Appl. Phys. 126, 215106 (2019).

    ADS 

    Google Scholar
     

  • Hsieh, W. P., Chen, B., Li, J., Keblinski, P. & Cahill, D. G. Pressure tuning of the thermal conductivity of the layered muscovite crystal. Phys. Rev. B 80, 180302 (2009).

    ADS 

    Google Scholar
     

  • Chen, B., Hsieh, W. P., Cahill, D. G., Trinkle, D. R. & Li, J. Thermal conductivity of compressed H2O to 22 GPa: a test of the Leibfried–Schlömann equation. Phys. Rev. B 83, 132301 (2011).

    ADS 

    Google Scholar
     

  • Ohta, K. et al. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core–mantle boundary. Earth Planet. Sci. Lett. 349, 109–115 (2012).

    ADS 

    Google Scholar
     

  • Broido, D. A., Lindsay, L. & Ward, A. Thermal conductivity of diamond under extreme pressure: a first-principles study. Phys. Rev. B 86, 115203 (2012).

    ADS 

    Google Scholar
     

  • Dalton, D. A., Hsieh, W. P., Hohensee, G. T., Cahill, D. G. & Goncharov, A. F. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Sci. Rep. 3, 2400 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukhopadhyay, S. & Stewart, D. A. Polar effects on the thermal conductivity of cubic boron nitride under pressure. Phys. Rev. Lett. 113, 25901 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Sun, Z., Yuan, K., Zhang, X. & Tang, D. Pressure tuning of the thermal conductivity of gallium arsenide from first-principles calculations. Phys. Chem. Chem. Phys. 20, 30331–30339 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 25901 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, J. S. et al. Integration of boron arsenide cooling substrates into gallium nitride devices. Nat. Electron. 4, 416–423 (2021).

    CAS 

    Google Scholar
     

  • Cui, Y., Qin, Z., Wu, H., Li, M. & Hu, Y. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat. Commun. 12, 1284 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravichandran, N. K. & Broido, D. Non-monotonic pressure dependence of the thermal conductivity of boron arsenide. Nat. Commun. 10, 827 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Basic physical properties of cubic boron arsenide. Appl. Phys. Lett. 115, 122103 (2019).

    ADS 

    Google Scholar
     

  • Kang, J. S., Wu, H., Li, M. & Hu, Y. Intrinsic low thermal conductivity and phonon renormalization due to strong anharmonicity of single-crystal tin selenide. Nano Lett. 19, 4941–4948 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maradudin, A. A. & Fein, A. E. Scattering of neutrons by an anharmonic crystal. Phys. Rev. 128, 2589–2608 (1962).

    ADS 
    CAS 

    Google Scholar
     

  • Lindsay, L. & Broido, D. A. Three-phonon phase space and lattice thermal conductivity in semiconductors. J. Phys. Condens. Matter 20, 165209 (2008).

    ADS 

    Google Scholar
     

  • Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201 (2017).

    ADS 

    Google Scholar
     

  • Lindsay, L., Broido, D. A., Carrete, J., Mingo, N. & Reinecke, T. L. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds. Phys. Rev. B 91, 121202 (2015).

    ADS 

    Google Scholar
     

  • Mao, H. K., Xu, J. A. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions. J. Geophys. Res. Solid Earth 91, 4673–4676 (1986).

    CAS 

    Google Scholar
     

  • Kunz, M. et al. A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source. J. Synchrotron Rad. 12, 650–658 (2005).


    Google Scholar
     

  • Said, A. H. et al. High-energy-resolution inelastic X-ray scattering spectrometer at beamline 30-ID of the advanced photon source. J. Synchrotron Rad. 27, 827–835 (2020).

    CAS 

    Google Scholar
     

  • Toellner, T. S., Alatas, A. & Said, A. H. Six‐reflection meV‐monochromator for synchrotron radiation. J. Synchrotron Rad. 18, 605–611 (2011).

    CAS 

    Google Scholar
     

  • Rivers, M. et al. The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press. Res. 28, 273–292 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. & Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, J. S., Ke, M. & Hu, Y. Ionic intercalation in two-dimensional van der Waals materials: in situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Lett. 17, 1431–1438 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, J. S., Wu, H. & Hu, Y. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications. Nano Lett. 17, 7507–7514 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M., Kang, J. S. & Hu, Y. Anisotropic thermal conductivity measurement using a new asymmetric-beam time-domain thermoreflectance (AB-TDTR) method. Rev. Sci. Instrum. 89, 084901 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Li, M. et al. Anisotropic thermal boundary resistance across 2D black phosphorus: experiment and atomistic modeling of interfacial energy transport. Adv. Mater. 31, 1901021 (2019).


    Google Scholar
     

  • Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).


    Google Scholar
     

  • Lin, H., Stoner, R. J., Maris, H. J. & Tauc, J. Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry. J. Appl. Phys. 69, 3816–3822 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • Wright, O. B. Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics. J. Appl. Phys. 71, 1617–1629 (1992).

    ADS 

    Google Scholar
     

  • Perrin, B., Rossignol, C., Bonello, B. & Jeannet, J. C. Interferometric detection in picosecond ultrasonics. Physica B 263, 571–573 (1999).

    ADS 

    Google Scholar
     

  • O’Hara, K. E., Hu, X. & Cahill, D. G. Characterization of nanostructured metal films by picosecond acoustics and interferometry. J. Appl. Phys. 90, 4852–4858 (2001).

    ADS 

    Google Scholar
     

  • Ma, W., Miao, T., Zhang, X., Kohno, M. & Takata, Y. Comprehensive study of thermal transport and coherent acoustic-phonon wave propagation in thin metal film–substrate by applying picosecond laser pump–probe method. J. Phys. Chem. C 119, 5152–5159 (2015).

    CAS 

    Google Scholar
     

  • Feng, T. & Ruan, X. Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. Phys. Rev. B 93, 045202 (2016); erratum 97, 079901 (2018).

    ADS 

    Google Scholar
     

  • Fan, H., Wu, H., Lindsay, L. & Hu, Y. Ab initio investigation of single-layer high thermal conductivity boron compounds. Phys. Rev. B 100, 85420 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Wu, H., Fan, H. & Hu, Y. Ab initio determination of ultrahigh thermal conductivity in ternary compounds. Phys. Rev. B 103, L041203 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Li, M., Dai, L. & Hu, Y. Machine learning for harnessing thermal energy: from materials discovery to system optimization. ACS Energy Lett. 7, 3204–3226 (2022).

    CAS 

    Google Scholar
     

  • Srivastava, G. P. The Physics of Phonons (Taylor & Francis, 1990).

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    PubMed 

    Google Scholar
     

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Tadano, T., Gohda, Y. & Tsuneyuki, S. Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations. J. Phys. Condens. Matter 26, 225402 (2014).

    CAS 
    PubMed 

    Google Scholar